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Geometry of frictionless and frictional sphere packings
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We study static packings of frictionless and frictional spheres in three dimensions, obtained via molecular
dynamics simulations, in which we vary particle hardness, friction coefficient, and coefficient of restitution.
Although frictionless packings of hard spheres are always isostatic~with six contacts! regardless of construc-
tion history and restitution coefficient, frictional packings achieve a multitude of hyperstatic packings that
depend on system parameters and construction history. Instead of immediately dropping to four, the coordina-
tion number reduces smoothly fromz56 as the friction coefficientm between two particles is increased.
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I. INTRODUCTION

Dense amorphous packings of frictionless spheres h
proven to be an extremely useful paradigm in differe
physical contexts, such as metallic glasses@1#, colloidal crys-
tals @2#, and emulsion rheology@3#. Granular materials are
another example of a system with macroscopically large p
ticles, with one major difference: grain-grain interactions
volve frictional forces. As a result, granular packings may
quite different from frictionless sphere packings in ways t
may impact significantly on their physical properties.

A common quantity of interest in packings of ha
spheres is the average number of contacts per particle~coor-
dination number! z. In order to achieve static mechanic
equilibrium, each sphere in the packing needs a suffic
number of constraints that freeze out its translational
rotational degrees of freedom. These constraints are prov
by contacts, and once there are a sufficient number of th
the packing can accommodate external body or bound
forces, as long as a set of contact forces satisfying mech
cal equilibrium can be found for the given arrangement
such contacts. The minimal average coordination numbe
quired to obtain static packings ofd-dimensional frictionless
spheres that are stable against external perturbationszn

52d @4#, whereas for spheres with friction,zf5d11 @5#. In
three dimensions,zn56 andzf54. We call such packings
‘‘isostatic.’’

In this study, we investigate whether or not sphere pa
ings readily achieve isostaticity under generic packing c
ditions. This isostaticity hypothesis is important in theor
focusing on the macroscopic response of such packings@6#,
and at first appears reasonable, given the strong nume
evidence from simulation@3,7# that zn56 for dense random
packings of frictionless spheres. Simulation studies of fr
tional spheres compressed in a gravity-free environment@7#
have shown thatzf is significantly less than 6, but with th
lowest achieved value of around 4.5, it remains uncl
whether the minimal value of 4 is reached in the limit of ze
confining pressure~equivalent to the hard-sphere limit.! It is
also unclear in what way the packings would change
arbitrarily small friction coefficientm between the spheres i
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order to achieve a reduction inz to four, if the isostaticity
hypothesis were true.

To address such questions, we perform a systematic s
lation study of the effect of various parameters on sph
packings. In particular, we vary the following materials pro
erties: the sphere hardnesskn , the coefficient of restitutione,
and the friction coefficientm between two particles. We als
vary the initial conditions of the packing by varying the in
tial packing densityf i , as well as the initial velocities of the
spheres. We investigate how the density, coordination n
ber and the nature of the contacts change as these param
are varied. Although frictionless hard spheres appear to fo
isostatic packings regardless of construction history and
titution coefficient, frictional hard spheres achieve a mu
tude of hyperstatic packings (z.zf) that depend on system
parameters and construction history@8#. The coordination
number reduces smoothly fromz56 as the friction coeffi-
cient is increased, disagreeing with the isostaticity hyp
thesis.

II. SIMULATION METHOD

We present molecular dynamics~MD! simulations in
three dimensions on model systems ofN520 000 monodis-
perse, cohesionless spheres of diameterd and massm, under
the influence of gravitational accelerationg. The system is
spatially periodic in thexy plane, with a unit cell of size
20d320d, and is bounded in thez direction by a rough bed
at the bottom and an open top. The starting configurati
consist of randomly positioned nonoverlapping spheres, w
packing fractions in the range 0.02,f i,0.3, obtained by
varying the overall height while keepingN and thex,y di-
mensions fixed. The system is subsequently allowed to s
under gravity on top of the rough bed~see Fig. 1!. The
equilibrated static packing height is about 50d. This method
of construction mimics the pouring of granular materia
through a sieve to an area far away from side walls, with
forming a conical heap.

Different ways of preparing static granular packings
clude compressing them@7#, and reducing the inclination
angle of gravity-driven chute flows below the angle of repo
@8#. In the frictionless case, conjugate gradient methods h
©2002 The American Physical Society04-1
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FIG. 1. Lower portion of the packing ofN
520 000 spheres in a periodic cell 20d320d
supported by a rough bed~black particles!, con-
structed by settling under gravity, withm50.50,
kn523105mg/d, and e50.88. ~a! Initial con-
figuration with volume fractionf i'0.13. ~b! In-
termediate time during settling.~c! Final ~static!
configuration withf f'0.60. The black frame is
added as a guide to the eye.
re
th
t

ea

it
re
e
tie

of
ield

es
avi-

of

here
-
le

ar-

f-
al
,

been used to study dense random packings@3,9#. However,
for the case of particles with friction, MD simulations a
more appropriate in order to properly account for both
normal and tangential forces, since the latter depend on
loading history of the contact.

The spheres interact only on contact through a lin
spring-dashpot interaction law@10# in the normal and tan-
gential directions to their lines of centers@11,12#. Contacting
spheresi and j positioned atr i and r j experience a relative
normal compressiond5ur i j 2du, where r i j 5r i2r j , which
results in a force

Fi j 5Fn1Ft . ~1!

The normal and tangential contact forces are given by

Fn5kndni j 2
m

2
gnvn , ~2!

Ft52ktDst2
m

2
g tvt , ~3!

whereni j 5r i j /r i j , with r i j 5ur i j u, vn andvt are the normal
and tangential components of the relative surface veloc
and kn,t and gn,t are elastic and viscoelastic constants,
spectively.Dst is the elastic tangential displacement betwe
spheres, obtained by integrating surface relative veloci
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during elastic deformation of the contact. The magnitude
Dst is truncated as necessary to satisfy a local Coulomb y
criterion Ft<mFn , whereFt[uFtu and Fn[uFnu. Friction-
less spheres can be simulated simply by settingm50. Fi-
nally, the particles are moved according to the total forc
and torques applied to them through contacts and the gr
tational field. Additional details can be found in Ref.@13#.

The presented simulations were carried out for a range
materials parameters. The normal spring constantkn varied
from 23105mg/d to 23109mg/d in order to understand
how the system behaves as it approaches the hard-sp
limit. In all cases,kt52kn/7 @14#. In order to study the cross
over from frictionless to frictional systems, the local partic
friction coefficientm was varied from 0 to 10. Finally, the
coefficient of restitutione, i.e., the ratio of the final to initial
normal velocities in a head-on binary collision, was also v
ied. For a linear spring-dashpot interaction,

e5exp~2gntcol/2!, ~4!

where the collision timetcol ,

tcol5p~2kn /m2gn
2/4!21/2. ~5!

Three values ofe50.26, 0.50, and 0.88 were used. The e
fect of e is like that of varying the quench rate in a therm
system: for smaller values ofe, collisions are more inelastic
4-2
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GEOMETRY OF FRICTIONLESS AND FRICTIONAL . . . PHYSICAL REVIEW E 65 031304
energy is dissipated faster, and the spheres have less a
to move from the first position where they are mechanica
stable, which may result in packings that are less stable
similarly prepared packings of more elastic grains.

Most of the simulations were started from a static co
figuration off i'0.13 as shown in Fig. 1~a!. The time step
dt'0.05Am/kn was chosen to accommodate the decreas
collision time as the particle hardnesskn is increased@cf. Eq.
~5!#. For kn523105mg/d, dt'1024Ad/g. Simulations
were then run until the kinetic energy per particle was l
than 1028mgd for small kn , and up to three orders of mag
nitude less for largekn . This requires (3 –8)3106dt for
small kn , and (4 –8)3107dt for kn523109mg/d.

Because of the large amount of time required to re
static equilibrium, each set of parameters was run for 1 t
configurations. In some cases, the particles were given
initial, random velocity with an average kinetic energy p
particle of approximately (20–100)mgd. The results were
identical in all cases within sample to sample fluctuation

III. RESULTS

A. Coordination number

Figure 2 shows the effect of friction coefficientm on z for
kn523105mg/d and e50.88 and 0.26. For both values o
e, z56.14460.002 for frictionless packings. As we shall s
in Sec. III C, the deviation from the isostatic value of 6 c
be attributed to the finite stiffness of the spheres, the isos
value is apparently obtained in the hard-sphere limit. Ho
ever, there is no sudden drop fromz56 as friction is turned
on; rather there is a gradual decrease inz to a parameter
dependent minimal value, accompanied by a similar decre
in the final volume fractionf f ~see Fig. 3!.

As depicted in Fig. 4, the decrease inz is primarily due to
an overall shift in the distribution of coordination numbers
lower values, rather than a change in its shape and wi
Consequently, the frequency of particles with eight or m
neighbors reduces asm increases, and particles with as fe
as two contacts start to appear atm50.5, indicative of arch-
ing within the packing at largem. The saturation ofz andf f

for m*1 is due to the fact that the typical tangential forc

FIG. 2. Bulk averaged coordination numberz as a function ofm
for kn523105mg/d andf i50.13 for two values ofe.
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Ft in a packing withm5` is expected to be of orderFn ,
and loweringm has little effect on the packing down tom
'1. This behavior of the contact forces is further verified
Sec. III D.

Unlike the frictionless case, the deviations from isostat
ity (z54) for m.0 cannot be attributed to corrections du
to the finite stiffness of the spheres. The packings rem
unambiguously hyperstatic in the hard-sphere limit.

When a static packing with a surface tilt near the angle
repose was generated by cessation of flow down an incli
plane@8#, similar results forz andf were obtained. Forkn
523105mg/d, e50.88, andm50.50, such packings gav
z54.69 andf50.594, compared toz54.90 andf50.61
for packings presented in this study.

B. The radial distribution function

The radial distribution function~RDF!, g(r ), for kn52
3105mg/d ande50.88, is plotted in Fig. 5 for several val
ues of m. The characteristic split second peak, indicati
short-range order out to second neighbors, is evident.
m50, g(r ) is essentially identical to that obtained for ra
dom close packing, at volume fractionf f'0.64 @15#. As m
increases, the secondary peaks ing(r ) diminish, as seen in
the inset.

The first peak ofg(r ) is of particular interest, since nea
contacts withr /d just over 1 play an important role in th

FIG. 3. Final volume fractionf f versusm for the same param-
eters as in Fig. 2.

FIG. 4. Distributions of the coordination number shift to low
values of z as m is increased. These results are forkn52
3105mg/d, e50.88 andf i50.13.
4-3
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SILBERT, ERTAŞGREST, HALSEY, AND LEVINE PHYSICAL REVIEW E65 031304
dependence ofz on the stiffness of the spheres~See Sec.
III C !. Figure 6 reveals a square-root singularity of the R
nearr /d51, i.e.,

g~r !}S r

d
21D 2a

, 0,
r 2d

d
!1, ~6!

with a50.5260.03. This singularity has apparently not be
reported elsewhere, although we have also verified its p
ence in the RDF of hard-sphere packings provided to us@16#.
Note that this singularity is integrable, and is distinct fro
particles actually in contact.

C. The hard-sphere limit

We next investigate the effect of the finite stiffness of t
spheres on the packings, and on the average coordina
number z in particular. Let us assume that the packin
formed by these stiff elastic spheres are statistically equ
lent to packings that would be obtained by first forming
truly hard-sphere packing and subsequently allowing ela
relaxation. Due to the slight compression of the spheres
finite stiffness under gravity, we expect to see an increas

FIG. 5. The radial distribution functiong(r ) for spheres with
and without friction forkn523105mg/d ande50.88.

FIG. 6. A logarithmic plot ofg(r ) vs (r 2d)/d ~for kn52
3105mg/d ande50.88) reveals a power-law singularity with ex
ponent a'0.5 for both frictionless and frictional spheres. Th
straight line has a slope of21/2. The same power law is observe
up to the largest values ofkn studied.
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coordination number during this elastic relaxation. Since
typical compressive strain of a sphere under the same lo
ing conditions scales as 1/kn , we expect that a finite fraction
of neighbors in the hard-sphere packing that were withi
distanced@11O(mg/knd)# of each other form new contact
upon elastic relaxation. The number of such near contact
the hard-sphere packing can be computed by integrating
hard-sphere RDF g`(r ) over the range r /dP(1,1
1mg/knd), yielding an effective coordination number

zn~kn!5z`1ãnS knd

mgD 2an

,
knd

mg
@1, ~7!

wherez` is the coordination number in the hard-sphere lim
ãn is a constant, and the exponent@cf. Eq.~6!#,

an512a. ~8!

Thus, there is a power-law correction to the apparent coo
nation number, with an exponent that depends on the na
of the singularity in the first peak ofg(r ). A numerical fit of
the data to Eq.~7! shown in Fig. 7~a! results inan50.498
60.002 andz`56.0160.02, in excellent agreement with th
isostaticity hypothesis, as well as the exponent relation

FIG. 7. Bulk averaged coordination numberz as a function of
particle hardnesskn , for f i50.13: ~a! for frictionless spheres,
where the extrapolation to hard-spheres implies isostatic pac
(z56); ~b! for @m,e#5@0.50,0.88# ~circles!, @0.50, 0.50# ~tri-
angles!; @0.50, 0.26# ~squares!; and @10.0, 0.26# ~diamonds!; where
the hard-sphere limit leaves the packings hyperstatic, with coo
nation numbers that depend onm ande.
4-4
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GEOMETRY OF FRICTIONLESS AND FRICTIONAL . . . PHYSICAL REVIEW E 65 031304
~8!. Makseet al. also found thatz approaches 6 as the stre
goes to zero in their numerical studies of compressed sph
@7#.

Armed with this insight, we apply a similar analysis
frictional packings, with results presented in Fig. 7~b!. Al-
though the RDF of frictional packings appears to have
same square-root divergence nearr 5d ~see Fig. 6!, the nu-
merical fit to Eq. ~7! in the presence of friction yields
different exponenta f'21/4, resulting in a slower approac
to the hard-sphere limit. Thus, the exponent identity Eq.~8!
does not hold for frictional spheres. Moreover, in contras
the frictionless case, the hard-sphere limits remain firm
above the isostatic value of four, and vary as a function om
ande.

Even though the rather unlikely scenario of a furth
crossover to isostaticity at extreme stiffnesses cannot be
tirely ruled out, it must be pointed out that the stiffest sphe
with kn523109mg/d in these packings experience strai
d/d&1028. This should be compared to the strain of a ‘‘typ
cal’’ grain, i.e., a glass sphere with a 100mm diameter, un-
der just its own weight on the earth’s surface:d/d
'(rgd/E)2/3. With the Young’s ModulusE'631010 Pa,
r'23103 kg/m3, and g'10 m/s2, this strain is about
1027. Thus, even if isostaticity is ultimately restored, th
relevance of the hard-sphere limit for real granular system
still questionable.

D. Plasticity of contacts

One potential explanation for the hyperstaticity of the
frictional packings is the loss of degrees of freedom for
tangential forces in contacts that have become ‘‘plastic’’ su
thatFt5mFn . If a finite fraction of the contacts satisfied th
condition, the isostaticity condition would need to be mo
fied @8#. However, as demonstrated by the distribution of
plasticity indexz[Ft /mFn of the contacts in Fig. 8, almos
all contacts in the static packings are below their friction
thresholdz51, eliminating this possibility. A similar distri-
bution of z was observed for a static packing created fro
flow arrest@8#.

FIG. 8. Probability distributionP(z), normalized by its maxi-
mum value, for various values ofm. Curves form>1 would col-
lapse if plotted againstFt /Fn instead ofz.
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For m>1, the distribution of the contact force ratioFt /Fn
indeed becomes independent ofm, which manifests itself as
a collapse ofP(z) when plotted againstFt /Fn ~not shown!.
This result is in accord with the observation in Sec. III A th
packings in this range ofm behave effectively the same a
for systems withm5`.

E. Effect of dissipation and initial conditions

The dependence of the packing geometry on coefficien
restitutione is also interesting. Unlikekn andm, changinge
would not change the configuration of a static packing a
it has stopped — it only affects the relaxation dynamics
increasing the removal rate of kinetic energy. In this sen
changinge is like changing the quench rate of a supercoo
liquid as it undergoes a glass transition. For very la
quench rates, the system might be expected to stop imm
ately upon forming the minimum number of contacts nec
sary to achieve static mechanical equilibrium.

Similarly to the effect ofe, we find that the initial starting
densities also affect the final packing. In Fig. 9, we plot t
variation in the final packing fractionf f , and coordination
numberz, as a function of the starting densityf i . We find
that more dilute starting states lead to more compact fi
states. This behavior may be due to the increase in pote
energy the system receives when it is more dilute, conver
into kinetic energy of the particles during settling, and e
abling them to explore more of the phase space on their
to achieving a preferred packing. An empirical fit to th
packing fraction is given by,

f f50.577810.0567exp~24.3f i !, ~9!

which is similar to the empirical fit for model 2D system
proposed in Ref.@17#. However, it should be noted that fo
frictional spheres, extrapolation of the coordination numb
to the limit f i5f f does not result in isostaticity as observ
in Ref. @17#.

In light of the dependence of the final state on such
rameters ase andf i , the breakdown of the exponent identi
Eq. ~8! for frictional packings is perhaps not surprisin
Packings obtained by the sedimentation of hard-spheres
lowed by elastic relaxation are probably not statistica

FIG. 9. Dependence of the final packing fractionf f and coor-
dination numberz on the initial packing fraction of the falling par
ticles f i , for kn523105mg/d, e50.88, andm50.50.
4-5



th
at

i
o

ce
es

te
re
ca

i
s.

ain
o

the
to

n-
dless
al
hat

of

dia
e-

4-
i-
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equivalent to packings of particles that are elastic from
start, due to the strong history dependence of the final st
obtained.

In general, for hyperstatic packings, the force network
not uniquely determined by the packing and the loadings
the particles. It follows that the determination of the for
network for hyperstatic packings of perfectly rigid particl
is an ill-posed problem@18#. Thus, the order of the limitkn
→` and the preparation of the packing cannot be commu
for frictional spheres. More bluntly, perfectly rigid sphe
systems with friction are unlikely to capture the mechani
properties of packings of frictional, elastic spheres, even
the limit of extremely large rigidity of these latter particle

IV. CONCLUSIONS

We have studied large scale packings of spherical gr
of varying hardness, friction coefficient, and coefficient
tte

ev

e,

in

e
o

for
du

on
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restitution, formed by sedimentation. We accounted for
systematic variation with particle stiffness and were able
infer properties of hard-sphere packings. Although frictio
less hard spheres appear to form isostatic packings regar
of construction history and restitution coefficient, friction
packings achieve a multitude of hyperstatic packings t
depend on system parameters and construction history@19#.
The coordination number reduces smoothly fromz56 as the
friction coefficient is increased, contrary to the hypothesis
isostaticity in such packings.
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